organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diaminium pyridine-2,5dicarboxylate dimethyl sulfoxide monosolvate

Hossein Aghabozorg,^a Minoo Bayan,^a* Masoud Mirzaei^b and Behrouz Notash^c

^aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, ^bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran Correspondence e-mail: minoobayan@yahoo.com

Received 21 January 2011; accepted 7 February 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.095; data-to-parameter ratio = 18.6.

In the crystal structure of the title solvated molecular salt, $C_3H_{12}N_2^{2+}\cdot C_7H_3NO_4^{2-}\cdot C_2H_6OS$, two amine groups of propane-1,3-diamine (pda) are protonated and two carboxylic acid groups of pyridine-2,5-dicarboxylic acid (2,5-pydcH₂) are deprotonated. The crystal packing features N-H···O hydrogen bonds and weak C-H···O intermolecular interactions.

Related literature

Pyridine-2,5-dicarboxylic acid $(2,5-pydcH_2)$ can coordinate to metal centers (Pasdar *et al.*, 2011) or form hydrogen-bonded networks (Zeng *et al.*, 2005). For work by our group on the synthesis of proton-transfer compounds containing different proton donor and acceptor groups, see: Eshtiagh-Hosseini *et al.* (2010*a*,*b*); Aghabozorg *et al.* (2008, 2011).

 $M_r = 319.39$

Experimental

Crystal data $C_3H_{12}N_2^{2+}\cdot C_7H_3NO_4^{2-}\cdot C_2H_6OS$ Monoclinic, $P2_1/n$ a = 11.984 (2) Å b = 10.346 (2) Å c = 12.942 (3) Å $\beta = 111.63$ (3)° V = 1491.6 (6) Å³

Data collection

STOE IPDS 2T diffractometer 12249 measured reflections 4010 independent reflections

Refinement $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.095$ S = 1.074010 reflections 216 parameters Z = 4Mo K\alpha radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 120 K $0.4 \times 0.3 \times 0.3 \text{ mm}$

3380 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.43 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2A \cdots O4^{i}$ $N2 - H2B \cdots O3^{ii}$ $N2 - H2C \cdots O2^{iii}$ $N3 - H3A \cdots O1^{iv}$ $N3 - H3B \cdots O3$ $N3 - H3C \cdots O4^{v}$	0.91 (2)	1.96 (2)	2.8260 (16)	157.8 (17)
	0.86 (2)	2.06 (2)	2.8461 (17)	151.0 (18)
	0.92 (2)	1.84 (2)	2.7385 (17)	164.4 (18)
	0.91 (2)	1.85 (2)	2.7369 (17)	161.6 (18)
	0.890 (19)	2.073 (19)	2.8427 (16)	144.2 (16)
	0.86 (2)	1.96 (2)	2.7925 (17)	164.2 (18)
$C8-H8A\cdotsO5^{v_1}$ $C10-H10A\cdotsO5$ $C11-H11B\cdotsO1^{ii}$	0.97	2.50	3.4614 (19)	170
	0.97	2.53	3.4718 (19)	165
	0.96	2.46	3.424 (2)	178

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z; (iv) x - 1, y, z; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) -x, -y + 2, -z.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2074).

References

- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Aghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011). Acta Cryst. E67, o292.
- Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010a). Acta Cryst. E66, 02810-02811.
- Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010b). Acta Cryst. E66, o1368–o1369.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Pasdar, H., Safari, Z., Aghabozorg, H., Notash, B. & Mirzaei, M. (2011). Acta Cryst. E67, m221.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Zeng, M. H., Feng, X. L. & Chen, X. M. (2005). Dalton Trans. pp. 2217-2223.

supplementary materials

Acta Cryst. (2011). E67, o610 [doi:10.1107/S1600536811004545]

Propane-1,3-diaminium pyridine-2,5-dicarboxylate dimethyl sulfoxide monosolvate

H. Aghabozorg, M. Bayan, M. Mirzaei and B. Notash

Comment

Pyridine-2,5-dicarboxylic acid (2,5-pydcH₂) can coordinate to metal centers (Pasdar *et al.*, 2011) or form hydrogen-bonded networks (Zeng *et al.*, 2005). Our research group has been focused on synthesis of proton transfer compounds containing different proton donor and acceptor groups (Eshtiagh-Hosseini *et al.*, 2010*a*; Eshtiagh-Hosseini *et al.*, 2010*b*; Aghabozorg *et al.*, 2008, 2011).

We report here the synthesis and crystal structure of the title proton transfer compound, $[pdaH2]^{2+}$. $[2,5-pydc]^{2-}$.(DMSO). The asymmetric unit contains deprotonated pyridine-2,5-dicarboxylic acid, diprotonated propane-1,3-diamine, and one DMSO solvent molecule (Fig. 1). Crystal packing is stabilized by N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Fig. 2 & Table 1).

Experimental

Propane-1,3-diamine (0.07 g, 0.29 ml, 1 mmol) was added to a DMSO/H₂O solution of pyridine-2,5-dicarboxylic acid (0.17 g, 1 mmol) (13 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were isolated by slow evaporation of the solvent after two months.

Refinement

Nitrogen-bound H atoms were found in difference Fourier map and refined isotropically without restraint. Carbon-bound H atoms were positioned geometrically and refined as riding atoms with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH₂) and were refined with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2. The packing diagram of the title compound, viewed down the *a* axis, showing N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (dashed lines).

Propane-1,3-diaminium pyridine-2,5-dicarboxylate dimethyl sulfoxide monosolvate

Crystal data

$C_{3}H_{12}N_{2}^{2+}\cdot C_{7}H_{3}NO_{4}^{2-}\cdot C_{2}H_{6}OS$	F(000) = 680
$M_r = 319.39$	$D_{\rm x} = 1.422 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4010 reflections
a = 11.984 (2) Å	$\theta = 2.6 - 29.2^{\circ}$
b = 10.346 (2) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 12.942 (3) Å	T = 120 K
$\beta = 111.63 \ (3)^{\circ}$	Block, colorless
V = 1491.6 (6) Å ³	$0.4\times0.3\times0.3~mm$
Z = 4	

Data collection

STOE IPDS 2T diffractometer	3380 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
graphite	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Detector resolution: 0.15 pixels mm ⁻¹	$h = -16 \rightarrow 14$
rotation method scans	$k = -14 \rightarrow 14$
12249 measured reflections	$l = -17 \rightarrow 17$
4010 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.095$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.6814P]$ where $P = (F_o^2 + 2F_c^2)/3$
4010 reflections	$(\Delta/\sigma)_{max} < 0.001$

216 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.25330 (3)	0.98812 (3)	0.01042 (3)	0.01677 (10)
01	0.89632 (10)	0.63514 (12)	0.26504 (10)	0.0237 (2)
O2	0.87767 (10)	0.45057 (12)	0.17030 (11)	0.0271 (3)
03	0.28902 (9)	0.63320 (10)	0.16349 (8)	0.0147 (2)
O4	0.28589 (9)	0.41856 (10)	0.13819 (8)	0.0145 (2)
O5	0.26031 (11)	1.00924 (11)	0.12737 (9)	0.0216 (2)
N1	0.52969 (11)	0.63725 (11)	0.20599 (10)	0.0136 (2)
N2	-0.08584 (11)	0.67039 (12)	-0.18378 (10)	0.0120 (2)
H2A	-0.1484 (18)	0.6233 (18)	-0.1797 (15)	0.018 (5)*
H2B	-0.1114 (17)	0.7160 (19)	-0.2439 (16)	0.019 (5)*
H2C	-0.0253 (19)	0.619 (2)	-0.1876 (16)	0.024 (5)*
N3	0.09589 (11)	0.71239 (12)	0.22640 (10)	0.0122 (2)
H3A	0.0361 (18)	0.6692 (19)	0.2400 (15)	0.020 (5)*
H3B	0.1526 (17)	0.6583 (18)	0.2240 (14)	0.013 (4)*
H3C	0.1289 (18)	0.768 (2)	0.2777 (16)	0.021 (5)*
C1	0.83737 (12)	0.54143 (14)	0.20910 (12)	0.0143 (3)
C2	0.70396 (12)	0.53745 (13)	0.18810 (11)	0.0116 (2)
C3	0.63536 (13)	0.43090 (13)	0.13750 (12)	0.0151 (3)
Н3	0.6694	0.3631	0.1122	0.018*
C4	0.51512 (13)	0.42656 (13)	0.12501 (12)	0.0144 (3)
H4	0.4682	0.3550	0.0929	0.017*
C5	0.46609 (11)	0.53089 (13)	0.16125 (11)	0.0108 (2)
C6	0.33590 (12)	0.52826 (13)	0.15352 (10)	0.0111 (2)
C7	0.64639 (12)	0.63845 (13)	0.21994 (11)	0.0133 (3)
H7	0.6915	0.7109	0.2528	0.016*
C8	-0.03989 (13)	0.75898 (13)	-0.08677 (11)	0.0144 (3)
H8A	-0.1022	0.8202	-0.0896	0.017*
H8B	0.0278	0.8073	-0.0907	0.017*
С9	-0.00090 (12)	0.68569 (13)	0.02247 (11)	0.0134 (3)
H9A	0.0622	0.6249	0.0264	0.016*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9B	-0.0682	0.6374	0.0272	0.016*
C10	0.04461 (13)	0.78090 (13)	0.11828 (11)	0.0139 (3)
H10A	0.1056	0.8357	0.1084	0.017*
H10B	-0.0210	0.8357	0.1183	0.017*
C11	0.37246 (17)	0.88029 (16)	0.02034 (14)	0.0256 (3)
H11A	0.4460	0.9123	0.0744	0.038*
H11B	0.3803	0.8739	-0.0507	0.038*
H11C	0.3553	0.7965	0.0427	0.038*
C12	0.31441 (17)	1.13018 (16)	-0.02737 (15)	0.0264 (3)
H12A	0.2650	1.2033	-0.0275	0.040*
H12B	0.3167	1.1191	-0.1002	0.040*
H12C	0.3943	1.1444	0.0253	0.040*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01593 (17)	0.01708 (17)	0.01747 (17)	-0.00372 (13)	0.00635 (13)	-0.00230 (13)
01	0.0141 (5)	0.0294 (6)	0.0311 (6)	-0.0076 (5)	0.0125 (5)	-0.0101 (5)
O2	0.0145 (5)	0.0236 (6)	0.0466 (7)	0.0026 (5)	0.0151 (5)	-0.0072 (5)
O3	0.0106 (4)	0.0155 (5)	0.0186 (5)	0.0014 (4)	0.0061 (4)	-0.0011 (4)
O4	0.0103 (4)	0.0146 (5)	0.0187 (5)	-0.0015 (4)	0.0054 (4)	0.0018 (4)
O5	0.0245 (6)	0.0222 (5)	0.0223 (5)	-0.0018 (4)	0.0137 (4)	-0.0039 (4)
N1	0.0118 (5)	0.0126 (5)	0.0174 (5)	0.0001 (4)	0.0065 (4)	-0.0009 (4)
N2	0.0098 (5)	0.0133 (5)	0.0133 (5)	-0.0003 (4)	0.0046 (4)	-0.0006 (4)
N3	0.0092 (5)	0.0134 (5)	0.0133 (5)	-0.0004 (5)	0.0035 (4)	0.0003 (4)
C1	0.0103 (6)	0.0176 (6)	0.0164 (6)	0.0004 (5)	0.0064 (5)	0.0038 (5)
C2	0.0099 (6)	0.0131 (6)	0.0131 (6)	0.0005 (5)	0.0057 (5)	0.0017 (5)
C3	0.0139 (6)	0.0126 (6)	0.0208 (6)	0.0015 (5)	0.0087 (5)	-0.0021 (5)
C4	0.0122 (6)	0.0118 (6)	0.0195 (6)	-0.0013 (5)	0.0063 (5)	-0.0021 (5)
C5	0.0085 (6)	0.0121 (6)	0.0124 (5)	0.0006 (5)	0.0044 (5)	0.0022 (5)
C6	0.0082 (6)	0.0152 (6)	0.0101 (5)	0.0001 (5)	0.0035 (4)	0.0008 (5)
C7	0.0116 (6)	0.0114 (6)	0.0172 (6)	-0.0021 (5)	0.0056 (5)	-0.0021 (5)
C8	0.0166 (7)	0.0125 (6)	0.0144 (6)	-0.0006 (5)	0.0059 (5)	-0.0008 (5)
C9	0.0121 (6)	0.0132 (6)	0.0145 (6)	-0.0004 (5)	0.0047 (5)	0.0000 (5)
C10	0.0149 (6)	0.0127 (6)	0.0137 (6)	0.0001 (5)	0.0049 (5)	0.0007 (5)
C11	0.0380 (10)	0.0197 (7)	0.0261 (8)	0.0078 (7)	0.0201 (7)	0.0009 (6)
C12	0.0351 (9)	0.0171 (7)	0.0315 (8)	-0.0015 (7)	0.0175 (7)	0.0028 (6)

Geometric parameters (Å, °)

S1—O5	1.5007 (12)	C3—C4	1.3904 (19)
S1—C11	1.7791 (17)	С3—Н3	0.9300
S1—C12	1.7888 (17)	C4—C5	1.3905 (18)
O1—C1	1.2594 (18)	C4—H4	0.9300
O2—C1	1.2442 (19)	C5—C6	1.5265 (18)
O3—C6	1.2508 (17)	С7—Н7	0.9300
O4—C6	1.2645 (17)	C8—C9	1.5182 (19)
N1—C5	1.3423 (17)	С8—Н8А	0.9700
N1—C7	1.3427 (18)	C8—H8B	0.9700

N2—C8	1.4866 (18)	C9—C10	1.5189 (19)
N2—H2A	0.91 (2)	С9—Н9А	0.9700
N2—H2B	0.86 (2)	С9—Н9В	0.9700
N2—H2C	0.92 (2)	C10—H10A	0.9700
N3—C10	1.4847 (18)	C10—H10B	0.9700
N3—H3A	0.91 (2)	C11—H11A	0.9600
N3—H3B	0.890 (19)	C11—H11B	0.9600
N3—H3C	0.86 (2)	C11—H11C	0.9600
C1—C2	1.5204 (19)	C12—H12A	0.9600
C2—C3	1.3867 (19)	C12—H12B	0.9600
C2—C7	1.3955 (18)	C12—H12C	0.9600
O5—S1—C11	105.87 (8)	N1—C7—C2	123.87 (13)
O5—S1—C12	106.25 (7)	N1—C7—H7	118.1
C11—S1—C12	97.83 (8)	С2—С7—Н7	118.1
C5—N1—C7	117.60 (12)	N2—C8—C9	111.69 (11)
C8—N2—H2A	109.7 (12)	N2—C8—H8A	109.3
C8—N2—H2B	108.8 (13)	С9—С8—Н8А	109.3
H2A—N2—H2B	108.5 (17)	N2—C8—H8B	109.3
C8—N2—H2C	110.5 (12)	С9—С8—Н8В	109.3
H2A—N2—H2C	112.2 (17)	H8A—C8—H8B	107.9
H2B - N2 - H2C	107.1 (17)	C8—C9—C10	109.33 (12)
C10—N3—H3A	109.5 (12)	С8—С9—Н9А	109.8
C10—N3—H3B	108.8 (11)	С10—С9—Н9А	109.8
H3A—N3—H3B	111.2 (17)	С8—С9—Н9В	109.8
C10—N3—H3C	108.6 (13)	С10—С9—Н9В	109.8
H3A—N3—H3C	110.5 (17)	Н9А—С9—Н9В	108.3
H3B—N3—H3C	108.1 (17)	N3—C10—C9	111.05 (11)
02-C1-01	126.50 (14)	N3-C10-H10A	109.4
02-C1-C2	116 52 (13)	C9—C10—H10A	109.4
01 - C1 - C2	116.98 (13)	N3-C10-H10B	109.4
C_{3} C_{2} C_{7}	117 59 (12)	C9—C10—H10B	109.4
$C_{3} - C_{2} - C_{1}$	120.48(12)	H10A—C10—H10B	108.0
C7 - C2 - C1	121.92 (12)	S1—C11—H11A	109.5
$C_{2}^{2} - C_{3}^{2} - C_{4}^{2}$	119 29 (13)	S1—C11—H11B	109.5
C2_C3_H3	120.4	H11A—C11—H11B	109.5
C4—C3—H3	120.4	S1—C11—H11C	109.5
C_{3} C_{4} C_{5}	118 97 (13)	H11A—C11—H11C	109.5
C3—C4—H4	120.5	H11B-C11-H11C	109.5
C5—C4—H4	120.5	S1_C12_H12A	109.5
N1 - C5 - C4	122.59 (12)	S1_C12_H12R	109.5
N1-C5-C6	116 55 (11)	H12A - C12 - H12B	109.5
C4-C5-C6	120.85 (12)	S1_C12_H12C	109.5
03 - 6 - 04	126.18 (12)	$H_{12}A = C_{12} = H_{12}C_{12}$	109.5
03 - 06 - 01	120.10(12)	H12R_C12_H12C	109.5
04 - C6 - C5	116 11 (12)	11120 012 11120	107.5
	(0, (2))	C1 C4 C5 C(177 55 (10)
02-01-02-03	0.0(2)	$C_{3} - C_{4} - C_{5} - C_{6}$	-1//.55(12)
01 - 01 - 02 - 03	-1/3.18(13)	101 - 05 - 06 - 03	10.0/(1/)
02-01-02-07	-1/5.04 (14)	U4-U5-U6-U3	-164.35 (13)

supplementary materials

O1-C1-C2-C7 C7-C2-C3-C4 C1-C2-C3-C4 C2-C3-C4-C5 C7-N1-C5-C4 C7-N1-C5-C6 C3-C4-C5-N1	5.8 (2) -2.7 (2) 176.36 (13) 1.6 (2) -2.97 (19) 175.99 (11) 1.4 (2)		N1-0 C4-0 C5-1 C3-0 C1-0 N2-0 C8-0	C5—C6—O4 C5—C6—O4 N1—C7—C2 C2—C7—N1 C2—C7—N1 C8—C9—C10 C9—C10—N3		-162.8 16.09 1.7 (2) 1.1 (2) -177.9 -179.7 -173.8	89 (12) (18)) 95 (13) 79 (11) 86 (11)
Hydrogen-bond geometry (Å, °)							
D—H···A		D—H		$H \cdots A$	$D \cdots A$		D—H…A
N2—H2A····O4 ⁱ		0.91 (2)		1.96 (2)	2.8260 (16)		157.8 (17)
N2—H2B····O3 ⁱⁱ		0.86 (2)		2.06 (2)	2.8461 (17)		151.0 (18)
N2—H2C····O2 ⁱⁱⁱ		0.92 (2)		1.84 (2)	2.7385 (17)		164.4 (18)
N3—H3A····O1 ^{iv}		0.91 (2)		1.85 (2)	2.7369 (17)		161.6 (18)
N3—H3B…O3		0.890 (19)		2.073 (19)	2.8427 (16)		144.2 (16)
N3—H3C····O4 ^v		0.86 (2)		1.96 (2)	2.7925 (17)		164.2 (18)
C8—H8A····O5 ^{vi}		0.97		2.50	3.4614 (19)		170
C10—H10A…O5		0.97		2.53	3.4718 (19)		165
C11—H11B····O1 ⁱⁱ		0.96		2.46	3.424 (2)		178
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) x -y+2, $-z$.	-1/2, - <i>y</i> +3/2,	z-1/2; (iii) -x	¢+1, −y	x+1, −z; (iv) x−1, y, z	r; (v) - <i>x</i> +1/2, y	v+1/2, -	-z+1/2; (vi) $-x$,

Fig. 1

Fig. 2

